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The Goryachev-Chaplygin gyrostat in quantum mechanics 

I V Komarov and V V Zalipaev 
Department of Theoretical Physics, Institute of Physics, Leningrad State University, 
Leningrad 199164, USSR 

Received 2 August 1983 

Abstract. We investigate the quantum mechanical analogue of the classical integrable 
system named in the title. The Goryachev-Chaplygin (GC) gyrostat is a generalisation of 
the GC top, where the Coriolis interaction is taken into account. The problem is formulated 
in terms of the Euclid E(3) group. The integrals of motion are derived. The separation 
of variables is based on the connection between the degenerated representation of the 
E(3) group and the special representation of the SO(3,Z) group. Some numerical results 
on the spectra of energy and separation constant are presented. The strong field limit for 
the integrals of motion is considered in detail, as well as a correlation diagram connecting 
the states in the limits of weak and strong fields. It appears that the dependence of energy 
and separation constant on the strength of the Coriolis interaction has the zone behaviour. 

1. Introduction 

The quantum analogue of the integrable classical system found by Goryachev and 
Chaplygin ( G C )  in 1900 has been investigated in the series of papers by Komarov 
(1982a, b, c). The system is defined as a top in external constant homogeneous field, 
and the principal momenta relate as 1 : 1 : $and the dipole moment of the top is directed 
across its symmetry axis. For the system to be integrable it is necessary that the 
projection of angular momentum on the field is zero. 

In the present paper we analyse a generalisation of the GC top-the Goryachev- 
Chaplygin gyrostat (GCG).  The Hamiltonian of the gyrostat differs from that of the 
corresponding top by linear terms in the body-frame: 

where J is an angular momentum and A is a constant arbitrary vector, the gyrostatic 
moment. A physical realisation of a gyrostat in classical mechanics is, for instance, 
the body with fluid-filled cavities. As the body rotates, the liquid moves in the cavities 
and produces additional angular momentum (Gorr et a1 1978). A model Hamiltonian 
of the gyrostat is used also for the description of the interaction of rotational and 
vibrational degrees of freedom in molecules due to the Coriolis interaction (Herzberg 
1945). 

The structure of the paper is similar to that of Komarov (1982a, b, c). In § 2 the 
integrals of motion are given in terms of the Euclid group E(3) and the procedure of 
separation of variables is outlined. In § 3 the spectral problem for energy and separation 
constant operators is solved. In § 4 we study the strong field limit for the integrals of 
motion. Finally in P 5 classification of GCG states and the correlation diagram for the 
energy levels are discussed in detail. 
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2. integrals of motion for GCG and separation of variables 

For the GC gyrostat the principal momenta of inertia are in the ratio 1 : 1 :a, and 
the gyrostatic moment is directed along its symmetry axis A = (0 ,  0, A ) .  The components 
of the angular momentum Ji and the unit field vector n = ( x ~ ,  x2, x3) in the body-frame 
satisfy the left commutation relations of the Euclid algebra e(3) 

The Hamiltonian GCG 

HA = 4 ( J :  +J: +4(53-h)’)-bXi (3) 

GA =2(J3-2A)(J: +.Ti +i )+b{~3,J1}  (4) 

commutes with the separation constant operator 

provided that the projection of the angular momentum onto the field direction is zero, 

1 = X l J l +  XJ2+ x3J3 = 0. ( 5 )  

Here 1 and xixi = r2 = 1 are Casimir operators of the E(3) group. Thus for the GCG 
to be integrable it is necessary to have the special ratio of principal momenta of inertia 
and the zero value of the Casimir operator 1, while the vectors of the dipole and 
gyrostatic moments are directed perpendicular to and along its symmetry axis respec- 
tively. 

The separation of variables in the spectral problem for the operators HA and GA 
is done in the same manner as for the GC top. It is based on the connection of the 
degenerated representation of the the E(3) group with a special representation of 
the S0(3 ,2 )  group. The ten generators of the latter are 

J. = - E .  G 

Pi = iGi4, Ri  = iGis, S = G45. 
rkl kl, 

They satisfy the commutation relations 

[GUY GKLI = i(SILGKJ + S I K G J L +  ~JKGLI + SJLGIK) (7) 

EIPQRSGPQGRS = 0,  GISGSJ + GJSGSI = SIJ.  (8a, b)  

and additional identities 

The algebra (6)-( 8) usually arises in connection with the Majorana representation 
of the Lorentz group (Barut and Rgczka 1977). The generators GIs could be represen- 
ted by the bilinear forms of two types of boson creation-annihilation operators. It is 
easy to check that Ji taken from (6) and xi defined as 

x. = S-’/2RiS-1/2 ( 9 )  

are the generators of the E(3) group and 1 = 0, xixi = 1. 
The group S0(3 ,2)  has a semisimple subgroup S0(2 ,2 )  with generators QOb(a, b = 

1,2 ,3 ,4) ,  which can be obtained by excluding the third column and third row from 
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the 5 X 5 skew-symmetric matrix GIJ, 

Qi 2 = - J 3  7 Qi3=Pi, Q23 = P2, Q34 = S,  Qi4=Ri ,  Q24 = R2. 

(10) 

The S0(2 ,2 )  group is a dynamical group for the GCG. The separation of variables is 
connected with a decomposition of the S 0 ( 2 , 2 )  group into the direct product 
S O ( 2 , l )  XSO(2, l )  with subgroup generators 

M:‘) = i ( - E , k i Q k i  * Qt4).  (11) 

Here minus corresponds to a = 1 and plus to a = 2. MIu’) satisfy the commutation 
relations 

g , ,  = g 2 2  = - g 3 3  = 1 

and the Casimir operators in the chosen representation are 

C =Mj”J2+Mp)2-  MP” = (13) 

To separate variables let us write down the Hamiltonian of GCG in Qab variables 

HA =~(S2-$+3J:-8AJ3+4A2)-bS-”2R1S-”2 (14) 

H & g ) = E ( E , g ) .  (15) 

and pass to the energy representation 

If we multiply the equation (14) from the left by and use new basis functions 
S-1’21E7 g ) ,  the equations more naturally can be written in terms of generators Mi”’. 
It decomposes into the two equations 

G~”1gi1) )  = g‘,” Ig(k”), (16) 

Gi2’)g(q2’) = g y ’ l g f ’ ) ,  (17) 
where S-‘’*IE, g )  = 1 g y ’ ) l g f ) )  and 

G‘,“’(E, A, b)=(-1)‘[8M:”’3 - 16AM:”’2 -4(E+$-2h2)M:”’]-4bM:“’.  (18) 

Here CY = 1 , 2  and k, q label the eigenstates. The energy and separation constant as 
functions of b, k,  q are obtained from the transcendental equation 

(19) ( 1 )  - ( 2 ) =  
g k  - g q  g k q ( A ?  6). 

In the new variables U = 2ML2’ and v = -2M:” the quantum equations of motion 
for GCG look like their classical counterparts (Sretensky 1953) 

(20a)  

d 
dt  
- u=(u-u)-”2[4b2(u2+:)- u2(u)]”2(U-u)-1’*, 

U ( p )  = p 3  - 4Ap2 - 2(  E + f  - 2A2)p - G‘,“’, 

where U ( p )  is a cubic operational form. 
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In the papers by Komarov (1982a, b, c) it was pointed out that the GC top is similar 
to the three-body periodic Toda lattice, if the impulse of the centre of mass of the 
lattice is equal to zero. This analogy is true also for the GC gyrostat. When one 
replaces in the equations (20) 4bZ(p2+i )  by 4b2 in the corresponding cubic form (21), 
the GCG equations in classical mechanics coincide with the equations of motion of the 
three-body periodic Toda lattice, if the impulse of the centre of mass equals 4A. Thus 
the coefficient 4A before p2  in V ( p )  has the same meaning as the impulse of the 
lattice centre of mass. 

3. Determination of the spectra of the integrals of motion 

The eigenfunctions of the operators G'"'(E, A, b) can be constructed in the basis of 
the eigenfunctions In,) of the compact generators M y ' .  It is natural to label the GCG 

state by quantum numbers L and M that define the angular momentum and its third 
component respectively in absence of the field, i.e. when b = 0. 

Let us define n, = 21+ 6, where 6 equals 0 or 1, 

6 = f (  1 - ( - 1 ) L + M  ). (22) 
The expansion for the eigenvectors with the fixed parity can be written as 

For the coefficients A!"' one gets the three-term recursion relations (TTRR) 

A{:; y { " )  + A~"'pj"' + A{:; y!?; = 0, 
yi"' = -b[( nu + l)(n, + 2)]'", 

A?,' = 0,  

(24) p I"' = ( nu + $) - (- 1 )"4A ( nu + f ) - 2( E + Q - 2A ' ) ( n u  + f ) - (- 1 ) "g  '"'. 
The TTRR (24) differ from those of the GC top by the quadratic term in pi"'. The 
roots of the determinant of the TTRR matrix (24) can be calculated with the help of 
infinite continuous fractions that rapidly converge due to the cubic increase of pj"' as 
l+m. 

From the analysis of the TTRR (24) the following symmetry can be established 

E ( L ,  M,  A, b ) = E ( L ,  -M, -A, b), 

g(L, M,  A, b)=-g(L, -M, -A, b). 

The algorithm for the calculation of E and g is practically the same as for the GC 

top (Komarov 1982b). The small field asymptotic gives a good starting approximation 
for linear extrapolation of the first step. In second-order perturbation theory one has 

b2 
(f3(L, M, A )  + 8(L, -M, - A ) )  + O( b4), E =f[L(L+ 1) + 3M2- 8AM+4AZ] - 

g = 2(M- 2A)(L-M +f) (L+M+f)  

bZ 
2L+ 1 

2(2L+ 1 )  

[ ( L  - M +$) 8(L, M, A )  - ( L  + M +4) 8(L, -M, -A) ]  + O( b4), -- 

(26) 
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where 

(L+ M + l ) ( L + M +  2) ( L + M -  l ) ( L + M )  e(L,  M,  A )  = 
(2L + 3)(2L + 6 M  + 5 - 8A) -(2L - 1)(2L + 6 M  - 3 - 8A)' 

For the next steps, we used a quadratic extrapolation of E (  b ) ,  g (  b )  and its derivatives 
at a fixed A. Then the calculations were made at each point of b with a required 
accuracy by iterations in the continuous fractions of TI-RR (24). 

Some numerical results are given in figures 1 and 2 for the two values of A. The 
states are labelled by ( L , M ) .  As well as the GC top, the GC gyrostat demonstrates 
the two patterns of behaviour of E ( b ) .  In the first case the energy decreases 
monotonously, while b increases. The GCG at once aligns its dipole moment along the 
field. In the second case the energy has a maximum. The gyrostat at first untwists, 
increasing its energy, and only then draws in the field. 

b 

5c. 

- --  I 

kW - -A' 

--------- --- 
I 2  11 _/---- 

4 - - 
I----- 

Figure 1. The eigenenergies of GCG as a function 
of the field strength for A = 1.0 (full curves) and 
A = 2.0 (broken curves). Each curve is labelled by 
the quantum numbers ( L ,  M I .  

Figure 2. The eigenvalues of the separation constant 
of GCG as a function of field strength for A = 1.0 
(full curves) and A = 2.0 (broken curves). Each curve 
is labelled by the quantum numbers ( L ,  M ) .  

4. Strong field limit 

In a strong field the dipole moment of the gyrostat is directed along the field to minimise its 
energy, E - -b, x1 - 1.  Thus it is useful to consider the scale transformation 

with x = b-''4 as a scale factor. Here xi, pi are the components of coordinate and 
impulse of the gyrostat point with the Poisson vector n = ( O , O ,  1) in the body-frame. 



1484 I V Komarov and V V Zalipaev 

We get from (27) and the Casimir operators 1 = xiJ, = 0, x,xi = 1 the following expansions 

For the GCG Hamiltonian we have 

HA =-b+ b1/2H1 + . . . , E =-b+b1”&1+0(1) ,  (29) 

where 

Hi = f (  +4(  r 2  - Y)’+ s: 5: ), y = Ax = O( 1). 

The new Hamiltonian corresponds to the two-dimensional oscillator with the 
frequencies ratio 1 : 2 and the shifted on r2 centre of equilibrium. The spectrum of 
HI is degenerated. The eigenvectors must be classified with respect to the separation 
constant operator, which after the scale transformation takes the form 

It is useful to introduce the creation-annihilation operators for the two one- 
dimensional oscillators 

52=c2+c;. 

.$3=(c3+c:)2-1’2, 

r2 - y = ( c2- c:)/2i, 

r3 = -i( c3 - ~ f ) 2 - ” ~ ,  
(31) 

which obey the usual commutation relations 

[c,, c; 1 = &a [c,, ckl= 0 ,  i. k = 2,3.  

Then we can rewrite the limiting integrals of motion in the form 

H1 = f ( { c S ,  c3) + 2 { C S ,  c2}) ,  

G , = - ~ ~ ( c ~ c ~ ~ - c ~ c : ) - ~ ~ { c ~ ,  c3}, 
(33) 

where { , }  is an anticommutator. In the basis of eigenfunctions of these oscillators 
one can get the spectrum of HI and Go. We have 

e , = m 3 + 2 m 2 + ~ = N + ~  (34) 

and go is an eigenvalue of the tridiagonal Hermitian matrix 

( m 2 -  1, m3+21Golm2, m3)=-2i[m2(m3+ l)(m3+2)1”2, 

( m 2 +  1, m3-21Golm2, m3)=2 i [ (m2+l )m3(m,+1) ]”2 ,  (35) 
(mz ,  m31Golm2, m3)= - 2 ~ ( 2 m 3 +  1) .  

Figure 3 shows some examples of dependence of eigenvalues go of the matrix (35) 
on y = A x a n d o n t h e i n d e x s = k + q .  

The same results can be obtained by the separation of variables in the equation 
H, I+)=E~~+) .  Let us introduce new variables p = - ~ T ~ + ( ~ T : + T $ ) ~ ’ ~  and v = - r z -  
( 7 ~ :  + ~ $ 1 ” ~ .  They are the parabolic coordinates in the two-dimensional impulse space. 
Supposing that the eigenfunctions of H1 can be represented as a product I $ )  = B ( p ) B (  v) 
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0 

Figure 3. The spectrum of the separation constant go in the strong field limit as a function 
of y = Ax and s = k +q, s = 1 , 2 , 3 , 4 .  The full curves correspond to even states and the 
broken curves correspond to odd ones. 

one gets two differential equations of the type 

The variable p is positive for (Y = 2 ,  and negative for cy = 1. After the substitution, 
which extracts singular points at zero and infinity, the solutions of equations (36) can 
be regarded as series in powers of p. The coefficients of the series obey the three-term 
recursion relations. To get the finite solution, one needs to truncate the series. It 
gives the spectrum (34). If s is the power of the polynomial, then 

E l  = 2 s + S - $ ,  (37) 
where S was defined by (22). 

The state can be labelled by indices k and q that are the numbers of positive and 
negative zeros of the partitial functions respectively. All roots of the polynomial are 
real, so k + q = s .  

Transition to the strong field limit for the eigenvectors of G Y 1  operators can be 
done also in the basis of the eigenfunctions of the compact generators M y '  with fixed 
parity. Introducing the scale-factor x and the continuous variable p = 21% instead of 
the discrete index 1 in the TTRR (24) we arrive again at the equation (36). 
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5. Correlation diagram 

The GCG states classification is analogous to that of the GC top and is based on the 
theorem that the tridiagonal Jacobi matrix (nl GF'I n')  has a non-degenerated real 
spectrum. If E, A, b are fixed, the eigenvalues gy ' (E ,  A, b )  monotonously increase 

and eigenvalues g:" ( E ,  A, b )  monotonously decrease 

g'," > gK1, k = O ,  1 , 2 , .  . .  . (39) 

According to the Hellmann-Feynman theorem the derivatives of eigenvalues 
g r ' ( E ,  A, b)  with respect to energy at fixed A and b are 

As a result of (38), (39) and (40) the following inequalities for E,(A, b )  take place 

Therefore at fixed arbitrary A and b and one of the quantum numbers, k or 4, the 
eigenenergies monotonously increase, while another quantum number grows up. So k 
and 4 together with the parity 6 can be called the true quantum numbers. If they are 
fixed, eigenvalues of integrals of motion do not appear and do not disappear as b 
changes. The sign of the derivatives ag,,/dA is not fixed, but in the strong field limit 
it is minus according to (30). 

To define a correlation diagram, it is sufficient to find the number of the state in 
the series g(kl)lq=fi.& and gq /k=fixed, when 6 = 0 and when b + W. If one fixes the labels 
L and M, the dependence of E and g on A becomes discontinuous, because the true 
indices k and q also become dependent on A. 

To find out the connections between L, M,  A and the true indices 6, k and 4 let us 
consider the polynomial 

(2)  

TY) ( p )  = p3 -4Ap'- up -g, a = 2 ( E  +$-2A2), (42) 

which is the limiting form of the TI-RR (24) at b = 0. The negative and positive roots 
of the polynomial correspond to a = 1 (variable U )  and CY = 2 (variable U )  respectively. 
Introducing = L+( - l ) "M+$  one gets 

(43) 

According to (24) the step on U and U variables in the M y '  representation is equal 
to 2. To define the state number it is sufficient to count how many numbers pa = 
(-1)"(21+ S +$) satisfy the inequalities 

t y ) ( p )  = ( p  -n',)(p + ; l ) ( p  -4A - C l +  C2) .  
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The relative position of the roots depends on A and can be different. As a final result 
we have 

Ma2A 

k = {  (45) 
$(3M -L - 6)  -[$(4A +;+a)], 
$(L-3M+2- 36) +[$(4A +$+ a)], 

4A < 3M-L-$, 
4A 3 3M - L-’ 29 

q = i ( L + M + G ) ,  

M <2A 

k =$(L- M -  36 +2),  

i (L+ 3M + 6 )  -[4(4A +$-a)], 
[$(4A -$+ 36)] -$(L+ 3M + S ) ,  

4A<L+3M+4, 
4A 3 L + 3 M +$. 

Here brackets [ ] denote the integer part. The indices k and q have steps as A changes. 
There are zones of A, inside which, at fixed L and M, indices k and q are constant, 
when A changes. The steps occur at the critical values A:’ = -(-l)ai-t6 +$ja, where 
ja is an integer. 

At the critical values of A?’ both the energy and the separation constant have a 
two-fold degeneration at b = 0. The labels of these two states (L, M )  and (L’, M’) 
obey one of the conditions L- M = L’- M’ or L +  M = L’+ M’. In the first case 

the critical A correspond to the two types of permutations of the roots of the ~ p ) ( p )  
polynomial, while the third root is fixed. Due to the obvious inequality p ,  > p2 one 
should fix alternatively pl = ii2 or p2 = -Z1. 

In the strong field limit the energy of the asymptotic oscillator can be expressed in 
terms of L, M, A. We have 

A(’! =’ , (L+M+2Mr+4),  in the second case Ak2’ =$(2M’+M-L-$).  Two types of 

M32A 

(47) 
4M + 6 +$- 2[$(4A +$+ S)], 

e ,={  2L - 2M +;- 6 + 2[$(4h +++ a)], 
M<2A 

4A < 3M- L-i, 
4A33M-L-’ 29 

(48) 
2L+2M- 6 +$-2[$(4A +$- S ) ] ,  
2[$(4A -$+ 36)] - 4M +;- 36, 

4A < 3 M + L + $ ,  
4A 3 3M + L ++. 

The energy dependence on A also has the zone structure. For each GCG state 
(L, M )  in the strong field limit the asymptotic oscillator energy E ’  is constant in the 
range between the two neighbouring critical values of A. The energy is different in 
different zones. 

It can be pointed out that the step functions appear also in the correlation diagrams 
of other quantum mechanical problems (see, for instance, the two Coulomb centres 
problem (Power 1973, Komarov et a1 1976)). 

The equations (47) and (48) demonstrate an interesting peculiarity of the asymptotic 
oscillator energy degeneration. The Hamiltonian (3) is invariant’ under the simul- 
taneous inversion of the coordinate axes and A. As a consequence in the strong field limit 
the GCG states form pairs of the multiplets of the same degenerating multiplicity at fixed A 
and M z 0 .  
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For the separation constant operator we also can see the zone structure of the 
spectrum. Inside the zone go is a smooth function of A and makes steps on the bounds 
of the zone. 

Figures 4 and 5 demonstrate the zone behaviour of E and g as functions of b, A 
for the ‘ground’ state ( L  = 0, M = 0). 

b 

Figure 4. The energy dependence on field strength at 
various A for the ‘ground’ state ( L  = 0, M = 0 ) .  The 
zone bounds are shown with arrows. 

c 

Figure 5. The separation constant dependence 
on field strengths at various A for the ‘ground’ 
state ( L  = 0, M = 0 ) .  The zone bounds are shown 
with arrows. 
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